
Predicting Avoidable Hospitalizations in Catalonia

among Primary Care Teams: A Machine Learning

Approach

Carlos Gallego

August 2025

Abstract

Introduction. Ambulatory Care Sensitive Conditions (ACSC) are widely used as a proxy

for the performance of the primary-care production function: they capture hospitalizations

that should be avoidable given timely, effective ambulatory management. We aim to

develop and validate machine-learning models that forecast next-year rates of ACSC

hospitalisations per 100,000 inhabitants at the Primary Care Team (PCT) level in

Catalonia, using heterogeneous routine data and providing interpretable,

management-oriented outputs.

Methods. Retrospective panel of PCT–years with a complete-year temporal split

(2018–2022 train; 2023 test) and expanding-origin cross-validation to mimic prospective

deployment. We implemented penalised linear models (Lasso, Ridge), decision tree,

random forest, gradient-boosted trees (XGBoost), support vector regression (RBF), and

MARS within a leakage-controlled pipeline. Feature selection aggregated three signals
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(Boruta, Elastic Net, SHAP) to retain stable and high-contribution predictors. Models

were trained under two conditions—using either the full original feature set (581

predictors) or a multi-signal selected (259 predictors) subset—and benchmarked against a

naı̈ve lag-1 baseline; grouped SHAP was used for interpretability. Performance was

evaluated on the 2023 hold-out with RMSE (primary), MAE, and R2.

Results. The best model was XGBoost with all features (RMSE = 92.08, MAE = 73.18,

R2 = 0.91), improving on the naı̈ve lag-1 baseline (RMSE = 118.00) by an absolute

margin of 25.92 per 100,000. Lasso (all features) was close (RMSE = 93.30), as was

Random Forest on the selected set (RMSE = 93.70). Across paired comparisons,

all-features variants generally matched or outperformed selected-feature counterparts,

with Random Forest and Ridge as exceptions favouring selection (stability gains). SHAP

explanations indicated a concentrated importance structure: the top 25 features accounted

for ≈ 55% of total mean absolute SHAP, with prominent roles for healthcare utilisation,

clinical history, provider resources and quality, and a team identifier capturing residual

between-team heterogeneity.

Conclusions. Routine, system-wide data can produce accurate, interpretable forecasts of

ACSC rates at the team level. The small performance premium of the full feature set must

be weighed against interpretability, stability, and computational costs of high

dimensionality. Outputs enable risk-adjusted benchmarking, targeted resource allocation,

and proactive operational monitoring; however, models are predictive—not causal—and

should complement judgement and prospective evaluation when guiding interventions.

Keywords: Artificial Intelligence, Health Economics, Healthcare Utilisation Outcomes,

Resource Allocation, Review.
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1. Introduction

The rate of preventable hospitalisations—Ambulatory Care Sensitive Conditions (ACSCs)—is

a core indicator of primary care performance, capturing access and clinical quality in the

prevention, timely diagnosis, and management of chronic and acute problems. ACSCs are

admissions that effective primary care should avert (e.g., diabetes complications, COPD

exacerbations, hypertensive crises, early infections) [1–4].

For this reason, major health agencies such as AHRQ, OECD, WHO/PAHO, and NHS

routinely employ ACSC admission rates—operationalised in instruments such as the AHRQ

Prevention Quality Indicators—as proxy indicators of primary-care resolutive capacity and

population access to the health system; these metrics are widely used in monitoring reports

and to inform resource-allocation and policy decisions [3, 5–8].

In Catalonia, ACSC monitoring is embedded within the governance of the regional health

system. The Catalan Health Service (CatSalut) systematically tracks ACSC admission rates,

while the Agency for Health Quality and Evaluation of Catalonia (AQuAS) includes

potentially avoidable hospitalisations in its composite socioeconomic index used to guide the

allocation of primary care resources [9–11]. Early research in Catalonia validated ACSC as an

indicator of primary care resolutive capacity across 161 basic health areas [12], and

subsequent analyses of over 1.3 million discharges confirmed that a small set of diagnostic

categories accounted for most preventable admissions and identified primary prevention, early

diagnosis, and ambulatory management as priority strategies [13].

Variation in ACSC admissions is influenced by a wide array of factors operating at multiple

levels. At the individual level, age, multimorbidity, and socioeconomic status are consistent

predictors of risk [14–16]. Area-level determinants such as socioeconomic deprivation,
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population density, and community disease burden are also strongly associated with ACSC

rates [3, 17, 18].

Although much of the literature has emphasised demand-side predictors derived from

electronic health data, evidence from small-area studies shows that supply and service

characteristics also matter: rurality and distance to primary care, physician density, hospital

bed availability, and service organisation explain part of the variation in different

settings [19–21].

Despite this evidence, most predictive models of ACSC hospitalisations developed to date rely

almost exclusively on patient-level variables, often omitting provider- and service-level

covariates. This limits their usefulness for system-level planning and resource

allocation [22, 23]. Conceptual frameworks such as Andersen’s healthcare utilisation model

offer a structured foundation for variable selection in predictive models, broadening the scope

beyond individual risk stratification [21]. Rosella et al. emphasise that predictive models

designed for decision support should explicitly include determinants relevant to health-system

planning, rather than focusing solely on patient-level risk [24].

Methodological debates further complicate this landscape. Machine learning (ML) methods

are well suited to high-dimensional administrative data and capture complex, nonlinear

relationships, but often at the expense of interpretability. Classical statistical models, such as

multivariable regression, are more transparent and allow for clear estimation of effect sizes,

and in some contexts perform nearly as well. For example, a German study of 6.4 million

insured individuals found logistic regression and Random Forest achieved comparable

accuracy for predicting ACSC hospitalisations (c-statistics ≈ 0.78), with Random Forest

slightly superior but regression offering greater interpretability [23]. This underscores the
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need to balance predictive performance with transparency and practical usability.

There is no robust prediction of ACSC hospitalisations at the primary care team (Equip

d’Atenció Primària, EAP) level that integrates both demand- and supply-side determinants.

This gap is particularly relevant in Catalonia, where a mixed model of service provision and

harmonised, system-wide administrative data—comparable across providers—enable

large-scale, team-level analyses.

We aim to address these gaps by developing and validating Machine Learning models to

predict the number of avoidable hospitalisations (ACSCs) for the adult population in Catalonia

between 2018 and 2023 at the Primary Care Team (PCT) level.

By incorporating both demand- and supply-side determinants, this study also seeks factors

associated with higher predicted numbers of avoidable hospitalisations, including the

influence of provider characteristics and management models, to inform organisational

strategies and resource allocation within primary care and to provide actionable insights for

primary care management. By integrating demand- and supply-side determinants, we seek to

identify which factors—such as workforce, workload, resource endowment, and management

model—drive elevated predicted ACSC rates. Our models can be updated periodically to flag

PCTs with performance concerns and surface interpretable drivers to guide targeted

organisational strategies, prioritise resource allocation, and support operational

decision-making in primary care. Specifically, the models will help identify PCTs at high risk

of avoidable hospitalisations, distinguish whether inter-team variation stems from differences

in population needs, performance or from resource constraints, and inform equitable,

evidence-based decisions on resource allocation and intervention prioritisation. In doing so,

the research contributes to the development of a learning health system in Catalonia, supports
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strategic objectives to reduce avoidable hospitalisations and territorial inequities, and advances

the methodological agenda for predictive modelling in primary care.

1.1. Institutional Catalan Healthcare System Background

Established by the 1990 Health System Organisation Law (LOSC), the Catalan system follows

a purchaser–provider split: CatSalut, a public institutional body attached to the Department of

Health, serves as the public insurer, planning, financing, purchasing, and evaluating health

services while contracting a mixed network of public, non-profit, for-profit, and consortial

providers [25]. Primary care illustrates this model. The territory is organised into basic health

units ( ≈ 5, 000–25,000 residents), each served by at least one primary care center and a

multidisciplinary Primary Care Team (PCT) responsible for promotion, prevention, basic care,

rehabilitation, and coordination with specialised care. Catalonia has ≈ 370PCTs, with each

citizen assigned a reference professional [26].

Management is heterogeneous: the Catalan Health Institute (ICS) is the main Public Company

of the Catalan Government and operates ≈ 78% of PCTs; other public non-ICS entities (e.g.,

consortia) manage ≈ 12–13%; and private contractors ≈ 9–10%, including professional-led

EBAs funded by capitation under public contracts. For users, services are uniform with a

common portfolio and no co-payment.

System-wide planning by the public insurer, CatSalut, standardises objectives and indicators,

producing harmonised, comparable data to assess preventive effectiveness (e.g., ACSCs)

across providers [27]. This setting supports analyses of how provider characteristics influence

healthcare utilisation and health outcomes.
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2. Methods

2.1. Study design and setting

A retrospective panel study was conducted with annual observations for each entity. The data

spans multiple years (2018-2023) and is structured by entity and year. The outcome of interest

is a numeric rate of ambulatory-care-sensitive condition events per PCT. Model development

used earlier years as training data and last year as a hold-out test set, reflecting a prospective

prediction scenario and avoiding any use of future data in training.

2.2. Data sources

This study primarily used two secondary data sources from the Catalan health system:

PADRIS (Programa d’Analı́tica de Dades per a la Recerca i la Innovació en Salut) and

SISAP (Sistema d’Informació dels Serveis d’Atenció Primària).

2.2.1 PADRIS:

The PADRIS program, led by the Agency for Health Quality and Assessment of Catalonia

(AQuAS) under the Ministry of Health, is a pivotal initiative designed to facilitate health

research, innovation, and evaluation through the reuse and linkage of healthcare data

generated by the integrated public health system of Catalonia (SISCAT) [28]. PADRIS

prioritizes making health data available to the scientific community, ensuring adherence to

legal and ethical frameworks, and promoting transparency. Its mission is to leverage extensive

health information to advance research, innovation, and evaluation, thereby improving public

health and strengthening Catalonia’s position as a reference in health information society and

high value-added services.
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2.2.2 SISAP:

SISAP, initiated in 2006, is a fundamental information system designed to provide critical data

primarily for clinical management to healthcare professionals and management structures

within primary care [29]. It achieves this by collecting data from various sources and

processing them to construct meaningful indicators. The Sisap-eCap is the web application

linked to the eCAP electronic health record system, allowing primary care professionals to

consult their own performance indicators and patient lists that do not meet specific criteria.

This system is crucial for continuous quality improvement and decision-making in primary

care.

2.3. Variables: Outcome and predictors

This combined dataset comprised a total of 789 variables. After excluding 208 SISAP-derived

variables according to a multi-year missingness assessment (variables with >45% missingness

in all years; >45% missingness in four or more years; or >55% missingness in three or more

years), the final predictor set comprised 581 variables (see Supplemental Material 1 for the

complete list). The key variable groups included:

• Accessibility indicators (n = 24): Reflecting ease of access to primary care services.

• Administrative/Geographic (n = 4): Variables describing administrative functioning

and the geographic context of Primary Care Teams (PCTs).

• Longitudinality indicators (n = 10): Measures of continuity of care and

patient–provider relationships.

• Medical history / clinical record (n = 264): Aggregated information on patient

morbidities, including CIAP (International Classification of Primary Care), GMA
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(Adjusted Morbidity Groups), and PCCMACA (Adjusted Clinical Risk Grouping

System in Primary Care for Chronic Patients with Multiple Conditions).

• Population and socioeconomic (assigned and attended) (n = 6): Characteristics of the

population assigned to and attended by each PCT, including socioeconomic attributes.

• Provider resources (n = 124): Staffing and financial resources available to providers.

• Quality indicators (n = 49): Indicators of service quality, including medication use and

the quality of pharmaceutical prescribing (e.g., pharmacy invoicing charged to the

Catalan Health Institute, ICS).

• Service utilization (n = 80): Extent to which patients engage with healthcare services

(e.g., visits, activity).

The outcome is the continuous count of avoidable hospitalizations per 100,000 inhabitants at

the PCT-year level, defined as the aggregate of admissions for standard ACSC diagnoses (e.g.,

COPD, hypertension, heart failure, dehydration, bacterial pneumonia, urinary tract infection,

angina, asthma, and diabetes-related complications).

For categorical predictors, very low-frequency levels in the training data were merged:

categories appearing in less than 0.5% of training instances were replaced by an “other” level.

(In the final modeling stage, a 1% frequency threshold was used similarly.) If a category

appeared in validation or test sets that was unseen in training, it was labeled as ”new level”).

These steps prevented sparse or novel factor levels from destabilizing the modeling. All

modeling steps respected the temporal ordering of data, with no leakage of future information

into training folds or final models.
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2.4. Preprocessing

Data preprocessing followed a prespecified pipeline estimated exclusively on the training data

to prevent information leakage. The main steps were as follows. Imputation: missing

numeric values were replaced with the training-set median, and missing categorical values

with the training-set mode; in model-specific recipes, missing categories were assigned to an

explicit “unknown” level. Categorical handling: rare categories were pooled, and previously

unseen categories at assessment were flagged; for algorithms requiring numeric inputs,

categorical predictors were one-hot encoded. Normalization: numeric predictors were

standardized (zero mean, unit variance) for scale-sensitive algorithms (e.g., linear models,

SVMs). Tree-based and boosting models did not require scaling, and for these models factor

encodings were retained rather than one-hot encoded. Variance filtering: predictors with zero

variance in the training set were removed. All preprocessing parameters (e.g., imputation

values, standardization moments, level maps) were learned from the training data within each

resampling fold and then applied to the corresponding validation or test data; no information

from future or held-out observations was used at any stage.

2.5. Train/test split and temporal resampling

The data were partitioned by calendar year: five years (2018-2022) were used for training, and

the most recent year (2023) were held out for testing. Thus, the model was trained on an initial

set of years and evaluated on completely later years. Within the training period, an

expanding-window temporal cross-validation was performed. Folds were defined such that

each fold’s training set consisted of all data up to year Y–1 and the validation set was the data

from year Y. In practice, two folds were used: one validating on the second-to-last training

year and another on the last training year. This ensured that each validation year came after its
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training data. No data from a given year were ever used to train a model evaluated on that

same year, preventing look-ahead bias. This temporal resampling was used for model tuning

and feature selection, providing a realistic estimate of performance on “next-year” predictions.

2.6. Feature selection strategy (multi-signal)

Feature selection was driven by three methods applied on each training fold:

Boruta (random forest wrapper): Boruta was run on the training fold’s predictors (after

preprocessing) to identify important features, using a significance threshold of p < 0.01 (max

100 iterations). It returned a subset of important dummy-coded features, which were then

mapped back to their original variable names.

XGBoost SHAP values: An XGBoost model (regression with squared-error loss, using fixed

hyperparameters such as learning rate 0.05 and maximum depth 6) was trained on the training

fold. SHAP values were then computed on the fold’s validation set; the mean absolute SHAP

contributions of dummy features were summed by original variable to quantify each

predictor’s importance.

Elastic Net (regularized regression): An Elastic Net linear model (α = 0.5) was fit on the

training fold, with regularization λ selected via cross-validation (using the one-standard-error

rule in cv.glmnet). Predictors with non-zero coefficients in the resulting model were recorded

(after mapping any dummy features back to their original names).

Each method produced a set of selected or ranked variables for a fold. To aggregate results

across folds, stable features were defined as those chosen in 60% of the folds by Boruta or by

Elastic Net. Separately, top SHAP features were determined by averaging the SHAP

importance across folds and selecting the set of variables that accounted for ≈ 90% of the total
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mean SHAP contribution (cumulative). The union of these sets was then taken to define the

final selected feature set. In other words, a variable was included if it was consistently selected

in multiple folds or if it was among the most important predictors by SHAP contribution. This

multi-signal approach combined the strengths of different selection criteria to yield a robust

predictor set.

2.7. Model training, hyperparameter tuning and baseline comparator

Using the selected predictors together with the lagged outcome, we trained and tuned a suite

of models: penalised linear regressions (Lasso and Ridge), a decision tree, a random forest,

gradient–boosted trees, support vector machine regression with a radial–basis kernel, and

multivariate adaptive regression splines (MARS). All models were embedded in a fixed

preprocessing–modeling pipeline estimated on the training data only. Hyperparameters were

optimised via grid search within k-fold cross–validation using RMSE as the objective.

Specifically, we tuned the L1/L2 penalty (λ) for Lasso/Ridge; tree depth and minimum node

size for the decision tree; the number of candidate predictors per split (with the number of

trees set large and fixed) for the random forest; learning rate and tree parameters (e.g., depth)

for gradient boosting; the cost and kernel bandwidth (γ) for support vector regression; and the

number of basis functions for MARS. The configuration minimising the mean validation

RMSE across folds was selected, and the corresponding model was then refit on the full

training set prior to final evaluation.

Each algorithm was trained twice—on the multi-signal selected feature set and on the full

original feature set—using the same hyperparameter search space and the same

expanding-origin cross-validation protocol (RMSE selection). Optimal hyperparameter values

were re-estimated separately for each algorithm and feature set. This design isolates the effect
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of feature selection from that of hyperparameter tuning: the tuning protocol is identical across

conditions, while optimal values are allowed to differ. This served to benchmark the

performance of the feature-selected models against the same models using all available

predictors.

As a baseline benchmark, a naı̈ve lag-1 model was used: for each entity i and year t, the

prediction is the outcome of the previous year (Ŷi,t = Yi,t−1). A feature y lag1 was created

to carry the lagged outcome value for each entity (the value of the outcome from the prior

year). This simple model assumes the best prediction for the current year is the last year’s

value. For test instances where no prior year was available (e.g., an entity’s first appearance in

the data), the baseline could not generate a prediction; those cases were omitted from baseline

error calculations. The lag-1 model provides a floor of performance that the more complex

models should surpass.

2.8. Performance evaluation

Model performance was evaluated using Root Mean Squared Error (RMSE) as the primary

metric, with Mean Absolute Error (MAE) and R-squared (R²) reported as secondary metrics.

During cross-validation, RMSE and R² were computed for each fold’s validation set

predictions, and the mean (± standard deviation) across folds was calculated to summarize

performance. For final evaluation, each model was evaluated on the hold-out test set (the

unseen years). RMSE, MAE, and R² were calculated on the test data to assess out-of-sample

accuracy. The same metrics were also computed for the naı̈ve lag-1 baseline on the test set

(for those instances where a lagged prediction existed) to provide a point of reference. The

expectation was that the trained models would achieve lower error and higher R² than the

baseline if they captured predictive patterns.
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2.9. Reproducibility and software

The analysis was conducted in a scripted, reproducible workflow (R, v4.4.3). Full

implementation details—including the complete list of software packages and exact version

numbers—are available in the project’s GitHub repository (see: ¡notyetavailablelink¿).

Random seeds were set to ensure reproducibility of results. These practices allow the analysis

to be audited and reproduced exactly using the same code and data.

3. Results

3.1. Descriptive results

Table 1 summarizes the evolution of ambulatory care–sensitive condition (ACSC) rates per

100,000 inhabitants across provider ownership types from 2018 to 2023. For each ownership

category, the total number of entity–year observations (N total) is shown together with the

annual mean ± standard deviation. The final row aggregates all providers. These descriptive

statistics characterize the panel over complete calendar years and contextualize the subsequent

modeling results.

Table 1: ACSC per 100,000 inhabitants by ownership type, 2018–2023 (mean ± SD).

Ownership type N total 2018 2019 2020 2021 2022 2023
Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Catalan Health Institute 1731 1129.4 ± 322.8 1103.4 ± 338.6 980.0 ± 320.6 834.8 ± 251.8 916.7 ± 273.9 1000.1 ± 292.2
Consortium 142 986.4 ± 305.2 1002.9 ± 261.9 873.5 ± 192.5 727.5 ± 166.6 781.0 ± 197.2 873.0 ± 193.0
Private Beneficent Foundation 90 941.8 ± 287.2 951.6 ± 282.1 858.1 ± 292.9 723.7 ± 273.3 757.7 ± 231.3 877.8 ± 259.3
Public Enterprise 78 906.1 ± 231.8 943.1 ± 262.8 810.3 ± 236.0 676.5 ± 214.1 764.5 ± 209.3 908.2 ± 186.4
EBA (Associative Base Entity) 66 941.7 ± 280.0 1043.0 ± 305.0 1002.8 ± 273.4 714.7 ± 252.4 775.0 ± 273.1 910.1 ± 287.5
Other Private 48 921.1 ± 265.9 914.4 ± 266.8 824.1 ± 236.6 689.2 ± 206.7 713.5 ± 224.7 827.9 ± 268.8
Municipal 42 1606.5 ± 241.7 1651.3 ± 275.9 1400.8 ± 233.8 1431.0 ± 237.7 1526.5 ± 269.1 1538.5 ± 297.0
Other Public 18 551.9 ± 105.7 580.6 ± 160.0 620.3 ± 224.2 650.0 ± 317.7 678.8 ± 368.8 604.4 ± 405.2
Society 18 1205.3 ± 116.2 1298.5 ± 272.6 1022.7 ± 272.1 661.3 ± 320.5 732.7 ± 353.1 913.7 ± 242.7
Social Welfare Mutual 6 931.2 ± — 993.4 ± — 896.8 ± — 700.7 ± — 769.4 ± — 814.7 ± —

TOTAL 2441 1076.0 ± 326.8 1063.5 ± 338.3 951.2 ± 314.3 819.7 ± 258.4 889.3 ± 281.9 962.8 ± 296.7
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3.2. Sample and Temporal Split

A total of 2441 — entity-year observations were analyzed. The modeling pipeline was trained

on annual data from 2018 through 2022, with 2023 held out for testing. The expanding-origin

cross-validation (CV) scheme used 4 folds, each using all data up to year Y for training and

evaluating on year Y+1: Fold 1 trained on 2018 and validated on 2019; Fold 2 trained on

2018–2019 and validated on 2020; Fold 3 trained on 2018–2020 and validated on 2021; and

Fold 4 trained on 2018–2021 and validated on 2022.

3.3. Variable Selection

The multi-method feature selection process resulted in a final set of 259 predictor variables.

These variables represented the union of features identified as important by the Boruta and

Elastic Net stability methods. In the Boruta stability analysis, 139 variables achieved a

selection frequency of at least 60%, while the Elastic Net selection frequency criterion (60%)

was met by 141 variables. In total, 259 unique predictors met the 0.60 stability threshold in at

least one of the two methods, confirming a substantial agreement between Boruta and Elastic

Net on the informative features.

The stability of feature importance was further characterized by each method. Many

predictors showed high selection stability (frequency near 1.0) in Boruta, indicating they were

consistently confirmed as important across CV resamples. Similarly, the Elastic Net identified

a subset of predictors with high coefficient stability. The overlap between methods was

considerable, as reflected in the union count above, though each method also contributed some

unique variables below the 0.60 threshold in the other method.

Aggregated SHAP importance values were calculated for the selected features using the final
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model. Table 3 lists the top 25 features ranked by mean absolute SHAP value, along with their

individual contribution percentages and cumulative contribution. The most influential

predictor had the highest mean SHAP value, contributing the largest single share of explained

model output variability. The top 25 features together accounted for 55% of the total

importance. Because this cumulative contribution did not reach 90%, the importance analysis

was extended. Beyond the top predictors, the importance values dropped off gradually,

indicating a long tail of features with small contributions.

Table 2: Top 25 predictor variables ranked by mean absolute SHAP value (grouped by original
variable).

Description mean shap sd shap share cumulative share variable group

Prescriptions per person 60.947 6.375 0.108 0.108 Quality indicators
Medication users: Oral antidiabetics (%) 34.167 2.932 0.060 0.168 Service utilization
Primary Care Team code 28.123 5.433 0.050 0.218 Administrative/Geographic
Allergic rhinitis 22.648 18.281 0.040 0.258 Medical history / clinical record
Medication users: Antipsychotics (%) 21.684 3.000 0.038 0.296 Service utilization
Digital health portal usage (% users) 21.538 27.757 0.038 0.334 Service utilization
Non–insulin–dependent diabetes 16.141 2.868 0.029 0.363 Medical history / clinical record
Medication users: Antibiotics (%) 15.529 7.133 0.027 0.390 Service utilization
Medication users: Antidepressants (%) 13.282 3.651 0.023 0.414 Service utilization
Public pharmaceutical expenditure (per assigned
patient)

10.520 2.563 0.019 0.432 Provider resources

% Recommended medicines / HBP 7.564 6.541 0.013 0.446 Quality indicators
Medication users: Lipid-lowering agents (%) 7.127 2.866 0.013 0.458 Service utilization
Trauma / unspecified injury 5.884 8.322 0.010 0.469 Medical history / clinical record
Appointment supply per professional per month 5.734 0.683 0.010 0.479 Service utilization
Reagents and analogues 4.867 2.961 0.009 0.487 Provider resources
Percentage of scheduled visits completed 4.744 3.848 0.008 0.496 Service utilization
Primary care visits: All 4.615 1.899 0.008 0.504 Service utilization
Primary care visits: Online 4.432 3.610 0.008 0.512 Service utilization
Social workers expenditures 3.892 1.287 0.007 0.519 Provider resources
FreeStyle Lite-TR blood glucose 3.595 3.026 0.006 0.525 Provider resources
GMA33 – Patients with chronic disease in 4 or more
systems

3.415 0.204 0.006 0.531 Medical history / clinical record

Cataract 3.326 1.316 0.006 0.537 Medical history / clinical record
Incomes: Third-party billing 3.272 0.187 0.006 0.543 Provider resources
Referrals observed 3.247 1.341 0.006 0.548 Referrals
GMA332 – Patients with chronic disease in 4 or more
systems – CMPLX 2

2.981 2.057 0.005 0.554 Medical history / clinical record

Notes. ‘mean shap‘ and ‘sd shap‘ are the mean and standard deviation of absolute SHAP contributions
aggregated by original variable across validation folds. ‘share‘ denotes the variable’s fraction of the total mean

absolute SHAP sum; ‘cumulative share‘ is the running total. Values are shown with three decimal places. Groups
follow the variable grouping used in the analysis.

3.4. Model tuning and hyperparameter contrast: selected features vs. all features

Each algorithm was tuned under both conditions using the same search space and the same

expanding–origin cross–validation protocol (RMSE selection), while allowing the optimal
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values to differ. The best configuration for each model balanced flexibility and generalization.

Table 3 contrasts the resulting hyperparameters: (i) Lasso and Ridge retained essentially the

same penalties in both conditions; (ii) the decision tree shifted to a much smaller min n and

larger cost–complexity when all features were used; (iii) Random Forest increased mtry

substantially with all features; (iv) XGBoost moved to a shallower but much larger ensemble

with a smaller learning rate and stronger row/column subsampling under all features; (v) SVM

RBF increased cost and reduced kernel width on the full–feature space; and (vi) MARS kept a

parsimonious specification in both settings. These tuned hyperparameters were used to train

the final models on the entire 2018–2022 training data.

Table 3: Best hyperparameters per model: selected features vs. all features (values rounded to
3 decimals).

Model Hyperparameter(s) Selected features
(values)

All features
(values)

Lasso (glmnet) penalty (λ) 10.000 10.000
Ridge (glmnet) penalty (λ) 0.000a 0.000a

Decision Tree (rpart) cost complexity;
tree depth; min n

0.000b; 6; 32 0.002; 6; 2

Random Forest (ranger)c mtry; min n; trees 155; 18; 1000 255; 5; 1000
XGBoost (xgboost) trees; tree depth;

min n; learn rate;
loss reduction (γ);
sample size; mtry

448; 10; 5; 0.046;
0.000d; 0.569; 5

1170; 2; 11; 0.008;
0.001; 0.972; 555

SVM (RBF, kernlab) cost; rbf sigma 4.632; 0.001 12.435; 0.001
MARS (earth) num terms;

prod degree;
prune method

5; 2; backward 5; 2; backward

a Exact value λ = 10−6 (rounds to 0.000 at three decimals).
b Exact value 10−10 for cost complexity (rounds to 0.000).
c Number of trees fixed at 1000 in training (not tuned).
d Exact value 4.431697× 10−5 for XGBoost’s γ (rounds to 0.000).

3.5. Test Set Performance and Baseline Comparison

Each model’s predictive performance was evaluated on the held-out 2023 test set and

compared with a naı̈ve lag-1 baseline. Table 3 reports test RMSE, MAE, and R2 for all
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algorithms under both conditions (selected features vs. all features) and the baseline. The best

overall model was XGBoost (all features) (RMSE = 92.08, MAE = 73.18, R2 = 0.91). Its

RMSE improved upon the baseline (naı̈ve lag-1: RMSE = 118.00, MAE = 94.10, R2 = 0.91)

by an absolute margin of 25.92 units (i.e., 92.08− 118.00 = −25.92). The second-best result

was Lasso (all features) (RMSE = 93.30, MAE = 74.30, R2 = 0.90), 1.22 units above

XGBoost (all features). The best model trained on the selected-feature set was Random Forest

(selected features) (RMSE = 93.70, MAE = 73.60, R2 = 0.91), 1.62 units above the top

performer.

Across paired comparisons (same algorithm with vs. without feature selection), all-features

variants generally matched or outperformed their selected-feature counterparts, with two

notable exceptions. For Random Forest, the selected-feature model outperformed the

all-features version (RMSE = 93.70 vs. 97.01), whereas for Ridge the selected-feature model

was markedly superior to the all-features variant (RMSE = 122.00 vs. 1364.57; R2 = 0.84 vs.

0.03). For the remaining algorithms the all-features configurations were equal or better:

XGBoost (selected features) (RMSE = 98.30) vs. XGBoost (all features) (92.08), Lasso

(selected features) (95.10) vs. Lasso (all features) (93.30), MARS (selected features) (97.50)

vs. MARS (all features) (97.13), SVM (RBF) (selected features) (117.00) vs. SVM (RBF) (all

features) (113.71), and Decision Tree (selected features) (111.00) vs. Decision Tree (all

features) (104.12).

Ranking by RMSE on the test set was therefore led by XGBoost (all features) (92.08),

followed by Lasso (all features) (93.30) and Random Forest (selected features) (93.70).

Ensemble methods (boosting and bagging) and regularized linear models showed the strongest

performance overall, whereas the single decision tree and SVM variants yielded higher errors.

The naı̈ve baseline produced RMSE = 118.00 and MAE = 94.10 (both worse than the top
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models) with R2 = 0.91. Absolute test metrics for every model and the baseline are

summarized in Table 3.

Table 4: Test set performance (2023) for all models (selected features vs. all features) and the
naı̈ve baseline.

Model Feature set RMSE MAE R2

XGBoost All 92.08 73.18 0.91
Lasso All 93.30 74.30 0.90
Random Forest Selected 93.70 73.60 0.91
Lasso Selected 95.10 76.40 0.90
Random Forest All 97.01 75.32 0.90
MARS All 97.13 75.57 0.91
MARS Selected 97.50 75.60 0.91
XGBoost Selected 98.30 78.30 0.90
Decision Tree All 104.12 82.54 0.88
Decision Tree Selected 111.00 86.30 0.86
SVM (RBF) All 113.71 93.97 0.88
SVM (RBF) Selected 117.00 97.60 0.88
Naive lag1 (baseline) Baseline 118.00 94.10 0.91
Ridge Selected 122.00 90.20 0.84
Ridge All 1364.57 149.36 0.03

Notes: “Selected features” denotes the multi-signal feature set; “All features” denotes the full original feature
set. Metrics were computed on the 2023 held-out test set. Using elastic columns (one Z for text and three Y
for numbers) distributes width more evenly across columns.

4. Discussion

4.1. Principal Findings

The machine learning models demonstrated high out-of-sample accuracy in predicting

avoidable hospitalizations at the Primary Care Team level. The best-performing model was

the XGBoost regressor using the full set of features, which achieved a test RMSE of 92.08

admissions per 100,000 (MAE 73.18) and R² = 0.91. This outperformed a naive baseline by

an absolute RMSE margin of 25.92 (baseline RMSE = 118.00; MAE 94.10). It means that the

XGBoost model reduced prediction error by ≈ 22% compared to carrying forward last year’s

rate. The second-best model was a Lasso regression with all features (RMSE 93.30, R² =

0.90), only 1.22 points higher in RMSE. The top model using a feature-selected subset was
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the Random Forest, with RMSE 93.70 (R² = 0.91), about 1.6 points above the XGBoost

benchmark. Thus, several approaches (boosted trees, penalized linear regression, and bagged

trees) yielded comparably strong results, all explaining roughly 90% of the variance in

next-year ACSC rates. In contrast, less flexible models like a single decision tree or SVM

were markedly less accurate (e.g. decision tree RMSE 104–111; SVM RMSE 113–117). All

top models comfortably outperformed the naive lag-1 baseline in error terms, although the

baseline’s R² was also ≈ 91% due to high autocorrelation in team-level rates.

Comparing models trained on all 581 predictors with those using the pruned, multi-signal

subset shows a consistent pattern. For most algorithms, access to the full feature set yielded

equal or lower RMSE; for instance, the full XGBoost model reduced RMSE by approximately

6% relative to its feature-selected counterpart, while Lasso gained about 2%. Two exceptions

are informative: Random Forest and Ridge performed better with feature reduction, indicating

greater susceptibility to overfitting or noise in the high-dimensional setting. Hence, although

the full specification offers a modest accuracy edge for the strongest learners, a carefully

curated subset performs nearly as well (often within ≈ 2% in RMSE) and can outperform in

specific cases, suggesting diminishing returns beyond the most informative predictors.

These results imply a three-way trade-off. First, accuracy: the all-features models achieve the

lowest errors in several instances. Second, interpretability: trimming predictors substantially

improves transparency, shifting models from many diffuse, low-magnitude effects toward a

tractable set of salient drivers. Third, computational cost: reducing dimensionality lowers

latency and resource use. Concretely, XGBoost required 1,170 trees on the full set versus 448

with selection, paired with a much smaller learning rate and extensive subsampling in the full

setting; Random Forest evaluated far more candidate splits per node with all features (e.g.,

mtry = 255 vs. 155), and tolerated smaller terminal nodes, both of which increase training
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and inference burden. These adjustments reveal that the full-feature models must be heavily

regularized to generalize, whereas selected-feature models can admit greater structural

complexity (e.g., deeper trees) without comparable overfitting risk.

Stability considerations reinforce this view. The collapse of Ridge with all features (near-zero

test R2) versus its reasonable performance after selection illustrates how correlated,

high-dimensional inputs can overwhelm certain estimators even under regularization. By

focusing on predictors consistently important across folds (multi-signal selection), the reduced

models likely improve out-of-sample robustness and attenuate spurious patterns.

In sum, including all available predictors confers a small accuracy premium at the expense of

interpretability, computational efficiency, and (for some algorithms) stability. For

implementation, decision-makers should weigh these marginal accuracy gains against the

benefits of parsimony: leaner models are more transparent, faster to retrain and deploy, and

potentially more portable across teams and periods, while retaining nearly all the predictive

performance that matters for planning.

4.2. Interpreting model drivers

The inclusion of heterogeneous predictors spanning patient demographics, clinical history,

service use, provider resources, quality indicators, and administrative/geographic attributes

enabled the models to uncover multiple drivers of avoidable hospitalizations. SHAP analyses

quantified each feature’s contribution to predictions and revealed a concentrated structure of

importance: the top 25 individual features accounted for ≈ 55% of total mean absolute SHAP,

indicating that a relatively small subset of strong predictors dominated model behavior. These

top features drew from several domains, underscoring the multifactorial nature of ACSCs.

Service-utilization signals were especially prominent: 10 of the top 25 features related to
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healthcare use (e.g., medication prevalence, visit volumes, appointment supply), together

contributing ≈ 24% of the total. The single most influential predictor was prescriptions per

person (≈ 10.8%), and a guideline-adherence measure (% recommended antihypertensive

medications) also appeared among the top features, suggesting that primary care processes

and quality have measurable associations with ACSC outcomes.

Provider-side and organizational factors were also relevant, though each individual variable

tended to have a modest share. Public pharmaceutical expenditure per assigned patient

ranked within the top ten (≈ 1.9%), and social workers’ expenditures appeared among the top

twenty, pointing to the salience of resource endowment. In addition, an administrative

identifier—the Primary Care Team (PCT) code—was the third most important feature (≈ 5%

of total SHAP), indicating persistent between-team differences not explained by observable

covariates. Functionally, the PCT code acts as a unit-level fixed effect, proxying for

unmeasured attributes (e.g., organizational culture, management practices, contextual factors,

or residual population mix). Its high importance shows that, even after controlling for

numerous measured predictors, some teams systematically exhibit higher or lower ACSC

rates, consistent with latent performance or contextual effects. Substantively, this suggests that

observable inputs do not fully capture performance gaps and motivates comparative audits of

practice style, governance, and operational processes in high- versus low-performing teams to

identify actionable drivers.

Aggregating importance by domain over the full feature space further clarifies these patterns.

Service utilization features contributed ≈ 31.2% of total SHAP, medical history/clinical

record ≈ 23.7%, and quality ≈ 18.5%; provider resources accounted for ≈ 10.6% and

administrative/geographic ≈ 6.1%. In contrast, accessibility (≈ 0.9%), population and

socioeconomic (≈ 1.0%), and longitudinality (≈ 0.6%) added only marginal predictive signal.
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Collectively, these distributions indicate that demand-side morbidity and utilization patterns,

alongside care quality and resources, drive most of the explained variation, whereas access

and continuity—as measured here—offer limited additional discrimination in this setting.

This suggests that within the relatively integrated Catalan system (with universal coverage and

geographically organized teams), variations in physical access or continuity (at least as

quantified by available metrics) did not substantially differentiate ACSC rates. It may be that

access to primary care is uniformly high (little variation in, say, travel time to clinics across

urban vs. rural teams in this dataset), or that other variables (like utilization rates) already

captured the effects of access and continuity indirectly. Consequently, the model implies that

improving access or continuity alone might yield limited gains relative to other factors,

although one should interpret this cautiously since a lack of importance in the model does not

mean these factors are unimportant in absolute terms.

Overall, the interpretability analysis supports a coherent narrative: sicker, more intensively

treated populations are associated with higher predicted ACSC rates; primary care processes

and resource levels may attenuate or amplify that baseline risk; and residual, team-specific

factors remain important. These findings are associative rather than causal. For example, a

high prescriptions-per-capita value likely reflects underlying morbidity rather than a direct

causal pathway from prescribing volume to admissions. Accordingly, the model’s

explanations should be used to guide investigation and targeted management actions, not as

direct causal levers.

4.3. Implications for health system management and planning

Predicting avoidable hospitalizations at the Primary Care Team (PCT) level has direct

implications for performance management, resource allocation, and equitable planning. First,
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model-based expected ACSC rates enable risk-adjusted benchmarking and contract design.

Rather than comparing raw admission rates—which penalise teams serving sicker

populations—authorities can contrast observed outcomes with model-predicted values to

identify over- and under-performance and to set realistic, risk-adjusted improvement targets.

This approach operationalises accountable care with equity: teams that outperform their

expected rate are recognised, while those falling short are flagged for support and review.

Second, forecasts support proactive resource allocation and targeted interventions. If a PCT is

predicted to face persistently high ACSCs, managers can pre-emptively deploy

care-management programmes, intensify follow-up for complex chronic patients, or reinforce

nursing and social care capacity. Explanations (grouped SHAP) clarify why a team is high

risk—for example, high chronic disease burden or process shortfalls—thereby directing action

(e.g., strengthening geriatric management or continuity of care) and informing regional

capacity planning when clusters of teams signal rising risk.

Third, the models facilitate equity audits and needs assessments. By incorporating

socio-demographic and morbidity indicators, predictions can be decomposed to assess how

much risk reflects population need versus modifiable care processes. This helps align

resources with need, identify underserved areas for targeted investment, and surface potential

structural issues. Scenario exploration (e.g., worsening local unemployment) can support

intersectoral responses.

From an operational perspective, forecasts can be integrated into dashboards for continuous

surveillance, shifting governance from retrospective review to anticipatory management.

Deviations between observed and expected trajectories can trigger supportive visits or

rapid-response measures. Crucially, explanations must accompany scores to avoid
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“black-box” perceptions and to foster constructive engagement with teams.

Economic considerations are central. Building and maintaining high-dimensional models

entails ongoing data engineering, computation, and analytic capacity. The case for adoption

rests on avoided hospitalisations and efficiency gains from targeted interventions.

Concentrating resources on predicted hot spots can be more cost-effective than blanket

policies and, over time, can inform budget allocation by anticipated cost avoidance.

These are predictive—not causal—tools. They should complement judgement and formal

evaluation. Use requires structured monitoring for drift, periodic recalibration and retraining

(e.g., on a rolling yearly basis), and governance that reviews global SHAP profiles to ensure

credible, fair use. Successful implementation depends not only on accuracy but on an

ecosystem of data maintenance, transparency, user training, and feedback loops that

continuously refine the tool as system conditions evolve. Finally, responsible use requires

structured monitoring for drift, periodic recalibration and retraining (e.g., on a rolling yearly

basis), and governance that reviews global SHAP profiles to ensure credible, fair use.

Successful implementation depends not only on accuracy but on an ecosystem of data

maintenance, transparency, user training, and feedback loops that refine the tool as system

conditions evolve.

4.4. Strengths

This study’s methodological approach was designed to maximize validity and usefulness for

health management through a rigorous temporal evaluation. Models were trained on five

complete years (2018–2022) and tested on a strictly later year (2023), mirroring a prospective,

year-ahead forecasting scenario. An expanding-origin cross-validation scheme tuned models

on successively newer folds (training up to year Y−1, validating on year Y ), thereby aligning
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model selection with the intended use case and avoiding look-ahead bias. All preprocessing

steps (imputation, scaling, encoding, rare-level pooling) were estimated within training folds

and then applied to validation and test data, further reducing leakage. This calendar-year

design captures temporal non-stationarity and reflects how health planners would deploy the

tool in practice.

A second strength is the comprehensive yet controlled feature strategy. From an initial set of

581 candidate predictors spanning clinical, utilisation, resource, quality, and contextual

domains, a multi-signal selection combined three complementary criteria: a Random-Forest

wrapper (Boruta), SHAP-based importance from gradient boosting, and Elastic Net sparsity.

Features were retained if they were consistently selected across folds or contributed materially

to cumulative SHAP importance, yielding a subset that is both predictive and interpretable.

Including the lagged outcome set a realistic yardstick; against this baseline, the best model

reduced error by ≈ 26 admissions per 100,000 (RMSE), demonstrating value beyond simple

persistence.

The pipeline also prioritised transparent benchmarking and explanation. Each algorithm was

compared to the naive lag-1 forecast on the same held-out year, anchoring performance in a

decision-relevant counterfactual. Post hoc grouped SHAP analyses then quantified how

domains contributed to predictions, translating complex models into actionable insights (e.g.,

the relative roles of service utilisation, chronic disease burden, quality indicators, and provider

resources). This coupling of high performance with domain-level explanations strengthens

credibility and supports governance.

Finally, the breadth of inputs is a substantive advantage for health system planning. By

integrating heterogeneous information—not only patient morbidity and demographics but also
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provider capacity, care processes, administrative/geographic factors, and proxies for

organisational scale—the models speak to levers available to managers, not just to risk

stratification. In sum, the combination of temporal validation, leakage controls, multi-signal

feature selection, explicit baseline benchmarking, and grouped SHAP interpretability offers a

robust, transferable template for predictive tools that are accurate, transparent, and

operationally ready.

4.5. Limitations

This study acknowledges several potential limitations. A primary challenge lies in the inherent

complexity of predicting health outcomes, particularly at an aggregated level, where numerous

unmeasured confounding factors could influence ACSC rates. While the study includes a wide

array of determinants, some unmeasured patient-level behaviours, lifestyle factors, or specific

clinical details not routinely captured in administrative data could still play a role.

The reliance on routinely collected administrative data, while offering broad coverage, may

also be subject to issues of data quality, completeness, or coding accuracy, which could

potentially introduce biases or inaccuracies into the analysis. Although data cleaning and

preprocessing steps will be rigorously applied, inherent limitations in the source data cannot

be entirely mitigated.

A significant methodological challenge arises from the unique and disruptive nature of the

COVID-19 pandemic. The drastic alterations in healthcare seeking behavior, access to care,

and the direct impact of the virus on health outcomes during this period [30] could

significantly alter the patterns of avoidable hospitalisations. This temporal variability, makes

the task of data partitioning for model training and validation particularly complex. A simple

random split would not capture the temporal shifts, and while temporal validation is planned,
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the distinct nature of the pandemic years (2020-2022) compared to pre- and post-pandemic

periods (2018-2019, 2023) might make it difficult to develop a single model that performs

optimally across all timeframes. This may necessitate the development of period-specific

models or dynamic modelling approaches, potentially impacting the interpretability of overall

trends.

Furthermore, while the study aims to extract knowledge regarding PCT-level factors, the

aggregation of patient-level data to the PCT level inherently involves a loss of individual-level

granularity. This might obscure some fine-grained relationships between individual patient

characteristics and ACSC risk within a given team. The generalisability of findings to other

health systems outside of Catalonia, which may have different organisational structures,

funding models, or population health profiles, might also be limited. Finally, the ”avoidable”

nature of ACSCs implies an ideal scenario; in reality, some hospitalisations may be

unavoidable due to the severity or rapid progression of conditions, even with optimal primary

care. This inherent ambiguity in the definition of ACSCs could subtly influence model

performance and interpretation.

Finally, these models are predictive in nature and not causal. Associations—such as links

between specific primary care indicators and lower ACSC rates—must not be interpreted as

evidence that changing those indicators will cause hospitalisations to fall. The study did not

establish causal effects, and unmeasured confounding may drive both predictors and

outcomes. For example, a high value on a “quality” indicator may correlate with fewer ACSCs

because of a third factor (e.g., stronger management or higher patient adherence), rather than a

direct causal pathway. Policy should therefore avoid simplistic “fix-the-predictor” responses;

instead, model insights should guide deeper diagnostic analysis, prospective evaluation, and

evidence-based interventions.
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2017–2023 de la Central de Resultats.. 2024; .

[10] Generalitat de Catalunya, Departament de Salut, Servei Català de la Salut . Resolució per
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